Spark算子是用于在Spark分布式计算框架中对数据集进行操作和转换的函数。这些算子提供了丰富的功能,可以在大规模数据集上进行高效的并行处理。
开发工作中使用最多的就是Spark算子的应用,相对于而言对于RDD算子的优化也很重要,本文就来重点讲解一下。
一、MapPartitions
1. map和mapPartitions对比
普通的map算子对RDD中的每一个元素进行操作,而mapPartitions算子对RDD中每一个分区进行操作。如果是普通的map算子,假设一个partition有1万条数据,那么map算子中的function要执行1万次,也就是对每个元素进行操作。
map算子
如果是mapPartition算子,由于一个task处理一个RDD的partition,那么一个task只会执行一次function,function一次接收所有的partition数据,效率比较高。
mapPartitions算子
比如,当要把RDD中的所有数据通过JDBC写入数据,如果使用map算子,那么需要对RDD中的每一个元素都创建一个数据库连接,这样对资源的消耗很大,如果使用mapPartitions算子,那么针对一个分区的数据,只需要建立一个数据库连接。
2. 总结
mapPartitions算子也存在一些缺点:对于普通的map操作,一次处理一条数据,如果在处理了2000条数据后内存不足,那么可以将已经处理完的2000条数据从内存中垃圾回收掉;但是如果使用mapPartitions算子,但数据量非常大时,function一次处理一个分区的数据,如果一旦内存不足,此时无法回收内存,就可能会OOM,即内存溢出。
因此,mapPartitions算子适用于数据量不是特别大的时候,此时使用mapPartitions算子对性能的提升效果还是不错的。(当数据量很大的时候,一旦使用mapPartitions算子,就会直接OOM)。
在项目中,应该首先估算一下RDD的数据量、每个partition的数据量,以及分配给每个Executor的内存资源,如果资源允许,可以考虑使用mapPartitions算子代替map。
二、ForeachPartition优化
1. 介绍
在生产环境中,通常使用foreachPartition算子来完成数据库的写入,通过foreachPartition算子的特性,可以优化写数据库的性能。
如果使用foreach算子完成数据库的操作,由于foreach算子是遍历RDD的每条数据,因此,每条数据都会建立一个数据库连接,这是对资源的极大浪费,因此,对于写数据库操作,我们应当使用foreachPartition算子。
与mapPartitions算子非常相似,foreachPartition是将RDD的每个分区作为遍历对象,一次处理一个分区的数据,也就是说,如果涉及数据库的相关操作,一个分区的数据只需要创建一次数据库连接,如图所示:
foreachPartition算子
2. 性能提升
使用了foreachPartition算子后,可以获得以下的性能提升:
1. 对于我们写的function函数,一次处理一整个分区的数据。
2. 对于一个分区内的数据,创建唯一的数据库连接。
3. 只需要向数据库发送一次SQL语句和多组参数。
在生产环境中,全部都会使用foreachPartition算子完成数据库操作。foreachPartition算子存在一个问题,与mapPartitions算子类似,如果一个分区的数据量特别大,可能会造成OOM,即内存溢出。
三、filter和coalesce配合
1. 问题描述
在Spark任务中我们经常会使用filter算子完成RDD中数据的过滤,在任务初始阶段,从各个分区中加载到的数据量是相近的,但是一旦进过filter过滤后,每个分区的数据量有可能会存在较大差异,如图所示:
分区数据过滤结果
根据上图我们可以发现两个问题:
1. 每个partition的数据量变小了,如果还按照之前与partition相等的task个数去处理当前数据,有点浪费task的计算资源。
2. 每个partition的数据量不一样,会导致后面的每个task处理每个partition数据的时候,每个task要处理的数据量不同,这很有可能导致数据倾斜问题。
2. 问题分析
针对上述的两个问题,我们分别进行分析:
1. 针对第一个问题,既然分区的数据量变小了,我们希望可以对分区数据进行重新分配,比如将原来4个分区的数据转化到2个分区中,这样只需要用后面的两个task进行处理即可,避免了资源的浪费。
2. 针对第二个问题,解决方法和第一个问题的解决方法非常相似,对分区数据重新分配,让每个partition中的数据量差不多,这就避免了数据倾斜问题。
那么具体应该如何实现上面的解决思路?我们需要coalesce算子。
repartition与coalesce都可以用来进行重分区,其中repartition只是coalesce接口中shuffle为true的简易实现,coalesce默认情况下不进行shuffle,但是可以通过参数进行设置。
假设我们希望将原本的分区个数A通过重新分区变为B,那么有以下几种情况:
1. A > B(多数分区合并为少数分区)
① A与B相差值不大
此时使用coalesce即可,无需shuffle过程。
② A与B相差值很大
此时可以使用coalesce并且不启用shuffle过程,但是会导致合并过程性能低下,所以推荐设置coalesce的第二个参数为true,即启动shuffle过程。
2. A < B(少数分区分解为多数分区)
此时使用repartition即可,如果使用coalesce需要将shuffle设置为true,否则coalesce无效。
我们可以在filter操作之后,使用coalesce算子针对每个partition的数据量各不相同的情况,压缩partition的数量,而且让每个partition的数据量尽量均匀紧凑,以便于后面的task进行计算操作,在某种程度上能够在一定程度上提升性能。
注意:local模式是进程内模拟集群运行,已经对并行度和分区数量有了一定的内部优化,因此不用去设置并行度和分区数量。
四、Repartition解决并行度
1. 并行度修改问题
并行度的设置对于Spark SQL是不生效的,用户设置的并行度只对于Spark SQL以外的所有Spark的stage生效。
Spark SQL的并行度不允许用户自己指定,Spark SQL自己会默认根据hive表对应的HDFS文件的split个数自动设置Spark SQL所在的那个stage的并行度,用户自己通spark.default.parallelism参数指定的并行度,只会在没Spark SQL的stage中生效。
由于Spark SQL所在stage的并行度无法手动设置,如果数据量较大,并且此stage中后续的transformation操作有着复杂的业务逻辑,而Spark SQL自动设置的task数量很少,这就意味着每个task要处理为数不少的数据量,然后还要执行非常复杂的处理逻辑,这就可能表现为第一个有Spark SQL的stage速度很慢,而后续的没有Spark SQL的stage运行速度非常快。
2. 问题解决
为了解决Spark SQL无法设置并行度和task数量的问题,我们可以使用repartition算子。
repartition算子使用前后对比图
Spark SQL这一步的并行度和task数量肯定是没有办法去改变了,但是,对于Spark SQL查询出来的RDD,立即使用repartition算子,去重新进行分区,这样可以重新分区为多个partition,从repartition之后的RDD操作,由于不再设计Spark SQL,因此stage的并行度就会等于你手动设置的值,这样就避免了Spark SQL所在的stage只能用少量的task去处理大量数据并执行复杂的算法逻辑。使用repartition算子的前后对比如上图所示。
五、ReduceByKey本地聚合
1. 算子介绍
reduceByKey相较于普通的shuffle操作一个显著的特点就是会进行map端的本地聚合,map端会先对本地的数据进行combine操作,然后将数据写入给下个stage的每个task创建的文件中,也就是在map端,对每一个key对应的value,执行reduceByKey算子函数。reduceByKey算子的执行过程如图所示:
reduceByKey算子执行过程
2. 性能提升
使用reduceByKey对性能的提升如下:
1. 本地聚合后,在map端的数据量变少,减少了磁盘IO,也减少了对磁盘空间的占用。
2. 本地聚合后,下一个stage拉取的数据量变少,减少了网络传输的数据量。
3. 本地聚合后,在reduce端进行数据缓存的内存占用减少。
4. 本地聚合后,在reduce端进行聚合的数据量减少。
六、总结
本文介绍了部分算子的优化方式,包含MapPartitions、Foreachpartition、Filter和Coalesce、Repartition、ReduceByKey等,具体使用需要我们实际测试。
限时特惠:本站每日持续更新海量各大内部网赚创业教程,会员可以下载全站资源点击查看详情
站长微信:11082411