在 Kafka 中还有两个特别重要的概念—主题(Topic)与分区(Partition)。Kafka 中的消息以主题为单位进行归类,生产者负责将消息发送到特定的主题(发送到 Kafka 集群中的每一条消息都要指定一个主题),而消费者负责订阅主题并进行消费。这里补充了对了解,附上上篇中的Kafka 体系结构概要图便于理解
主题是一个逻辑上的概念,它还可以细分为多个分区,一个分区只属于单个主题,很多时候也会把分区称为主题分区(Topic-Partition)。同一主题下的不同分区包含的消息是不同的,分区在存储层面可以看作一个可追加的日志(Log)文件,消息在被追加到分区日志文件的时候都会分配一个特定的偏移量(offset)。
offset 是消息在分区中的唯一标识,Kafka 通过它来保证消息在分区内的顺序性,不过 offset 并不跨越分区,也就是说,Kafka 保证的是分区有序而不是主题有序。
如上图所示,主题中有4个分区,消息被顺序追加到每个分区日志文件的尾部。Kafka 中的分区可以分布在不同的服务器(broker)上,也就是说,一个主题可以横跨多个 broker,以此来提供比单个 broker 更强大的性能。
每一条消息被发送到 broker 之前,会根据分区规则选择存储到哪个具体的分区。如果分区规则设定得合理,所有的消息都可以均匀地分配到不同的分区中。如果一个主题只对应一个文件,那么这个文件所在的机器I/O将会成为这个主题的性能瓶颈,而分区解决了这个问题。在创建主题的时候可以通过指定的参数来设置分区的个数,当然也可以在主题创建完成之后去修改分区的数量,通过增加分区的数量可以实现水平扩展。
Kafka 为分区引入了多副本(Replica)机制,通过增加副本数量可以提升容灾能力。
同一分区的不同副本中保存的是相同的消息(在同一时刻,副本之间并非完全一样),副本之间是“一主多从”的关系,其中 leader 副本负责处理读写请求,follower 副本只负责与 leader 副本的消息同步。副本处于不同的 broker 中,当 leader 副本出现故障时,从 follower 副本中重新选举新的 leader 副本对外提供服务。Kafka 通过多副本机制实现了故障的自动转移,当 Kafka 集群中某个 broker 失效时仍然能保证服务可用。
如上图所示,Kafka 集群中有4个 broker,某个主题中有3个分区,且副本因子(即副本个数)也为3,如此每个分区便有1个 leader 副本和2个 follower 副本。生产者和消费者只与 leader 副本进行交互,而 follower 副本只负责消息的同步,很多时候 follower 副本中的消息相对 leader 副本而言会有一定的滞后。
Kafka 消费端也具备一定的容灾能力。Consumer 使用拉(Pull)模式从服务端拉取消息,并且保存消费的具体位置,当消费者宕机后恢复上线时可以根据之前保存的消费位置重新拉取需要的消息进行消费,这样就不会造成消息丢失。
– END –
限时特惠:本站每日持续更新海量各大内部网赚创业教程,会员可以下载全站资源点击查看详情
站长微信:11082411